International Journal of Pharmacy and Pharmaceutical Sciences

Review Article

A REVIEW FROM HISTORICAL TO CURRENT-CELASTRUS PANICULATUS

GANESH N. SHARMA1, HARJINDER KAUR1*, BIRENDRRA SHRIVASTAVA2, SATISH CHANDER ARORA3

1 School of Pharmaceutical Sciences, Jaipur National University, Jaipur, 2RKSD College of Pharmacy, Kaithal

Received: 27 May 2020, Revised and Accepted: 30 Jun 2020

ABSTRACT

Celastrus paniculatus is commonly known as “Malkangani”, widely distributed in the Maldives, Australia, China, Cambodia, Malaysia, Taiwan, Nepal, Thailand as well as in the Pacific Islands and all over India mainly Maharashtra, Orissa and Andaman and Nicobar group of Islands on an altitude of 1800m. It climbs up to over 10m. The leaves are ovate or elliptic in shape with dentate margin. Seeds are ellipsoid or ovoid, yellowish-brown in color and grow inside the capsules. Celastrus paniculatus (Malkangni) is used in Ayurveda as a nervine tonic, tranquilizer and diuretic and in rheumatism, goit, leprosy and asthma. Different Parts of Celastrus paniculatus after extraction and fractionation give different active constituents such as sesquiterpene esters-malkanginol, malkangunin, sesquiterpene alkaloids-celapanin, celapanigin, alkaloids-celastrine, paniculatine, fatty acids-oleic acid, palmitic acid, linoleic acid and stearic acid, crystalline substance tetecasanol and sterol. Different pharmacological activities are anti-rheumatic, anti-fungal, nootropif activity, antimalarial activity, anti spermatogenic effect, anti-anxiety and anti-atherosclerotic effect. In the present review, our target is to search, bring together and compile the data of Celastrus paniculatus, which have less side effects and very valuable for the treatment of rheumatism. Related information is procured from various scientific publications using online, seek out engines such as Google scholar, Pubmed and Science Direct. A total of 200 articles was reviewed out of which 55 articles were selected to review for the description of the plant, parts used, chemical constituents, traditional uses and for reported activities.

Keywords: Celastrus, Rheumatism, Celapanin, Leaves, Malkangunin

INTRODUCTION

Herbal medicinal plants are used for the treatment of various diseases and it will not be an overstatement that use of these medicinal plants is as old as the mankind [1]. In USA, Australia and Canada, Market of herbal medicine has a turnover of about US$ 30 billion in 2000 which was increased up to 5-15% by the turn of the century [2]. Worldwide annual market of herbal medicine has reached to $60 billion. The industrialized societies have been discovered to the extraction of active constituents and the development of several drugs and chemotherapeutic from these plants as well as from traditionally used rural herbal remedies. Celastrus paniculatus is one of the plants which has a rich source of therapeutically and medicinally potential active constituents.

Search strategy used

The review of literature related to the present study was done in the period from March 2018 to till date. The search terms used were ‘Celastrus paniculatus’, Malkangni’, ‘Biological activities of Celastrus paniculatus’, ‘Traditional uses of malkangni’, ‘Description of jyotishmati’. The present search and study were done by referring various textboks, journals containing peer review and research papers. The electronic databases used were Science Direct, PubMed, which provides free access to Medline, Google. Only published articles with different languages from 1970 to till date were used for the more elaborated study to make the latest review article on Celastrus paniculatus. Reference lists of articles were also cross-checked.

Description of Celastrus paniculatus

Binomial name

Celastrus paniculatus Wall.

Synonym

Celastrus dependens Wall.

Common Indian Name

<table>
<thead>
<tr>
<th>Hindi</th>
<th>Malkagi, Makkani</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gujarati</td>
<td>Black-oil tree, Climbing staff tree</td>
</tr>
<tr>
<td>Sanskrit</td>
<td>Malkangni, Velo</td>
</tr>
<tr>
<td>Bengali</td>
<td>Jyotish mati, Svarnalota</td>
</tr>
<tr>
<td>Marathi</td>
<td>Jyotish mati, Svarnalota</td>
</tr>
<tr>
<td>Malayalam</td>
<td>Pohalavam</td>
</tr>
</tbody>
</table>

Scientific Classification

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub kingdom</td>
<td>Angiosperms</td>
</tr>
<tr>
<td>Division</td>
<td>Magnolopsida</td>
</tr>
<tr>
<td>Order</td>
<td>Tracheophytes</td>
</tr>
<tr>
<td>Family</td>
<td>Celastraceae</td>
</tr>
<tr>
<td>Genus</td>
<td>Celastrus</td>
</tr>
<tr>
<td>Species</td>
<td>C. paniculatus</td>
</tr>
</tbody>
</table>
Seeds of *Celastrus paniculatus* (Source-Wikipedia and India mart)

Parts used
- Seeds, leaves, root and stem

Family
- Celastraceae

Genus Celastrus
Celastrus is a genus of woody, climbing shrub distributed over China, Japan, Australia, Tropical North America and Pacific Islands. There are seven species of *Celastrus* in India one of which is *Celastrus serratus* Hoechst present in Indian Botanical Garden Howrah. It is commonly known as Bittersweet or Staff tree. It is grown on almost each type of soil and situation [3].

Celastraceae
Celastraceae family is found in tropical and subtropical regions of the world, including North Africa, South America and many parts of East Asia, mainly in China [4, 5]. *Celastraceae* is a family having 96 genera and 1350 species of herbs, wine and small tree. *Celastraceae* has five subfamilies Celastroideae, Hippocrateoideae, Parnassioideae, Salacioideae and Stackhousioideae. Some of the genera of *Celastraceae* are *Celastrus*, *Kokoona*, *Salacia*, *Gymnosporia* and *Euonymus*.

Leaves
- Color: Green
- Shape: Oval or elliptic
- Texture: Leathery and smooth
- Arrangement: Alternate
- Margin: Toothed
- Apex: Acute, acuminate
- Base: Obtuse or rounded

Bark
- Color: Outer bark is pale or reddish-brown while the inner bark is light yellow in color
- Surface: Rough and cracked

Flower
- Color: Greenish White or yellowish-green, hermaphrodite, pubescent

Fruit
- Fruits are globose, yellow in color with three to six seeds

Seed
- Color: Reddish brown
- Shape: Ellipsoid in shape enclosed in orange, red fleshy aril and grows inside the fruits
- Odor: Unpleasant
- Taste: Bitter

Chemical constituents

Seeds

Sesquiterpene alkaloids
- Celapanin, Celapagine, Celapanigine

Monounsaturated and polyunsaturated fats

Sesquiterpene ester
- 1α, 6β, 8β-triacetoxy-9β-benzyloxydihydrro beta-agarofuran along with the some known compounds which are 1α, 6β, 8α-triacetxy-9α-benzyloxydihydrro beta agarofuran angulatueoid C, and 1α, 6β, 8β, 14-tetra acetoxy-9α-benzyloxy dihydrro beta-agarofuran from the carbon tetrachloride-soluble fraction of *Celastrus paniculatus* methanolic seed extract [8].

Triterpenoids
- Pristimerin [9]

Fatty acids
- Palmitic, Oleic, Linoleic and Linolenic acid.
- 80% of the methanolic extract of seed oil contain Malkanguinol, Malkangunin, Panicalatadiol.

Polyalcohol esters
- Malkagunuin, Polyalcohol A, B, C and D [10, 11]

Sterols
- Vitamin C, minerals, carbohydrates and proteins are also found in the seeds [12, 13].
Ethanolic extract of *Celastrus paniculatus* showed better antimalarial activity against *Plasmodium falciparum* [14]. Further, it was also reported as a central musurinic receptor blockade [15].

Anti-inflammatory activity

Inflammation is a defense mechanism of a tissue reaction to infection, injury or a foreign substance. **Singh and co-workers, 2018** reported anti-inflammatory efficacy of ethanol extract of *Celastrus paniculatus* seed in male rats [36]. When a dose of 250 mg/kg was given orally to the rats for 45 d, the reproductive organ weight, sperm count and motility were decreased. Biochemical estimation showed that testicular enzymes lactate dehydrogenase and gamma glutamyl transpeptidase activity was increased while sorbitol dehydrogenase activity was decreased.

Anti-fertility activity

Anti-fertility effect was studied on the liver and testis of rats by using the oily extract of seeds of *Celastrus paniculatus* by Bidwai et al., 1990. Intrapерitoneal treatment of 0.2 ml of *Celastrus paniculatus* oil for 30 d showed vacuolisation, cell depletion and arrest of spermatogenesis [35].

Ethnobotanical study

In traditional Himalayan medicines *Celastrus paniculatus* is used to reduce the swelling of the veins of the anus and rectum, which causes discomfort and bleeding, in the treatment of rheumatism, diarrhea and leprosy [24]. Crushed roots are used for pneumonia in folk medicines [25]. A Gond tribe of Uttar Pradesh uses the powdered root in the treatment of cancer [26]. In the Chhindwara and Betul district of Madhya Pradesh powder of *Celastrus Paniculatus* is used to treat rheumatism [27, 28]. The use of seeds of *Celastrus paniculatus* is used by herbal therapist for hair growth and to make the hair silky [29]. Tribes of Purandhar [30] and tribes of Jalgaon and Nandurbar districts of Maharashtra [31, 32] use the seed oil on joints for the treatment of rheumatic pain. They also use the oil orally and topically for the treatment of paralysis in morning (33). In the Mayurbhanj district of Odisha it is used for joint diseases, gout and rheumatism. Codified literature of Himachal Pradesh shows its uses as cardiotonic, carminative, antihelmintic and in the treatment of skin infections.

Reported activities of *Celastrus paniculatus*

Tranquilizing effect

Karanth et al., 1989 evaluated seed oil of *Celastrus paniculatus* at the dose of 200 mg/kg for its tranquilizing effect on mice [14]. The study revealed that it decreased the spontaneous motor activity, amphetamine-induced hyperactivity and consumption of oxygen in mice. It increased the effect of hexobarbitone and produce hypothermia in mice.

Antimalarial activity

Celastrus paniculatus extract from the root bark and stem was evaluated by Pavanand et al., 1989 for antimalarial activity against *Plasmodium falciparum* by in vitro method. In comparison to stem, root bark showed better antimalarial activity [9]. Further a quinonoid triterpene was isolated from a chloroform extract for in vitro antimalarial activity, but this was less active than conventional antimalarial drug tested.

Nootropic activity

Gupta and Kumar, 2002 investigated aqueous, methanolic, chloroform and petroleum ether extracts of *Celastrus paniculatus* seeds at the dose of 200 mg/kg for nootropic effect in male Wistar rats by using a shuttle box, step through, step down and elevated plus maze paradigms [42]. After experimentation, it was observed that only aqueous extract improved the memory of rats.

Celastrus paniculatus is also reported as a nootropic drug by Bhanumathi and coworkers, 2016. Methods used for nootropic activity were elevated plus maze and passive avoidance test [43]. In elevated plus maze method, they gave the aqueous extract of seed of *Celastrus paniculatus* by using doses of 350 and 1050 mg/kg and in passive avoidance test they gave the doses of 500 and 1500 mg/kg for the mice. The standard drug used was piracetam with a dose of 100 mg/kg and sodium nitrite was used to induce amnesia. Results obtained showed that the *Celastrus paniculatus* seed extract enhance the memory power by inhibiting acetyl cholinesterase enzyme, and thereby increase the acetylcholine level in the brain.
Raut and colleagues, 2015 evaluated the same activity using Celastrus paniculatus seed oil and an equal amount of ghee at a dose of 200 mg/kg/day orally in mice [44]. Evaluation demonstrated that Celastrus paniculatus oil with ghee has a potential drug in the treatment of dementia.

Similar activity was evaluated by Jakka, 2016 by using whole plant of methanolic extract of Celastrus paniculatus using elevated plus, morris water maze on scopolamine and aluminium-induced amnesia and estimation of acetylcholinesterase enzyme activity [45]. After experimentation Jakka observed that Celastrus paniculatus extract significantly improved learning and memory power of rats as transfer latency in elevated plus maze and escape latency in the morris water maze model showed a declined. Further acetyl cholinesterase enzyme concentration in the brain was decreased and % of inhibition of acetylcholine activity in rat brain increased which shows the nootropic effect of Celastrus paniculatus.

Antioxidant activity
Gupta and Kumar, 2002 evaluated cognitive property of the seeds of Celastrus paniculatus in rats by using petroleum ether, chloroform, methanol and aqueous extracts and found that only the aqueous show improvement in learning and memory power. As we know that memory loss is associated with oxidative stress they further tested the aqueous extract for antioxidant activity by using doses of 100, 200 and 300 mg/kg, out of that only 200 and 300 mg doses lead to a significant decrease in malondialdehyde and the increase in glutathione and catalase level in the brain. Thus gave confirmation of memory-enhancing and antioxidant effect.

Alama and Haque, 2011 studied the antioxidant activity of seeds of Celastrus paniculatus by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method [46]. They done the extraction of seed with methanol and further fractioned it with water, chloroform and ethanol. The evaluation showed that ethanolic fraction shows highest activity in DPPH free radical scavenging activity and also inhibit activity of authentic proxy nitrite and total reactive oxygen species. The chloroform extract showed a moderate and aqueous extract had no activity in DPPH method.

In vitro antioxidant activity of ethanolic extract of Celastrus paniculatus leaves was evaluated by Sharma and Shivastava, 2013 by reducing power assay. In this method, there was an increase in absorbance of the reaction mixture, which may be due to the active constituents present in the Celastrus paniculatus leaves extract and total phenolic content present was 125.6 mg/gm equivalent to gallic acid in 1 mg/ml of the extract [47].

Celastrus paniculatus fruit seed oil showed good antioxidant activity when performed by the DPPH method by Ramdan, 2019.

Antibacterial activity
Harish et al., 2007 reported that ethanolic extract higher than 100μg and the isolated, purified constituent colapanin higher than 50μg per 100μg of Celastrus paniculatus leaves exhibited a better zone of inhibition when screened by agar well diffusion method against Staphylococcus aureus (gram-positive bacteria) and Pseudomonas aeruginosa and Klebsiella pneumonia (gram-negative bacteria) ethanolic extract and colapanin showed reasonable activity compared to the standard drug Ciprofloxacin (50μg/100μl). The dissimilarity in the activity may be due to differences in the cell wall because in gram-positive bacteria, the cell wall is a single layer while in gram-negative bacteria, it is multi-layered [48].

Hypolipidemic effect
Hypolipidemic effect of Celastrus paniculatus seeds was evaluated by Patil and coworkers, 2010 by extracting seeds with methanol and then testing the dose of 65 mg/kg in experimentally induced hypercholesterolemia rats orally. Results showed that Celastrus paniculatus decreased the total plasma cholesterol, triglyceride and Low-density lipoprotein (LDL) level comparable to standard hypocholesteremic drug and induced hypercholesteremic rats. There was an increase in High-density lipoprotein (HDL) cholesterol level, lipoprotein lipase activity and less deposition of cholesterol in aorta of rats that were fed with seed extract.

Antifungal activity
Singh et al., 2010 investigated the antifungal activity of methanolic extract of roots and aerial parts of three plants, namely Acorus calamus, Tinospora cordifolia and Celastrus paniculatus against Curvularia lunata, Fusarium, Bipolaris and Helminthosporium species [49]. They used the doses of 1000, 2000, 4000 and 5000μg/ml. The result showed that Celastrus paniculatus at the dose of 5000μg/ml had better activity against Celastrus lunata and Fusarium.

Antifungal potential of Celastrus paniculatus mother plant leaves and in vitro raised clones was also investigated by using chloroform and methanolic extracts against Phytophthora capsici and Rhacosporia solani by Sadasivan and Elyas, 2013 [50]. Growth of fungi and its percentage was checked on the dextrose agar medium. The brine shrimp lethality assay was done to check the cytotoxicity of extracts of Celastrus paniculatus leaves. After experimentation, it was clear that the methanolic extract of both mother plant and in vitro raised clones showed 100 percent of inhibition of Phytophthora capsici while chloroform extract of mother plant had very less activity and in vitro propagated plants showed 40 percent of inhibition and against solani, the methanolic extract showed maximum activity and chloroform extract showed 77.77% and 86.66% respectively.

Neuromodulating effects
Sumathi et al., 2013 investigated the alcoholic seed extract of Celastrus paniculatus (ASECP) to prevent aluminium induced neurotoxicity in the cerebral cortex and the cerebellum of the rat brain. They gave the aluminium chloride at a dose of 4.2 mg/kg/day i.p for 4w to male albino rats. Experimental rats were given two different doses of 200 and 400 mg/kg/day orally of Celastrus paniculatusextract 1hr prior to the aluminium chloride administration for 4 w. At the end, results showed that aluminium administration significantly decreased the level of glutathione and the activities of superoxide dismutase, glutathione peroxidase, Na+/KATPase, Ca2+/MgATPase and increased the activities of alkaline phosphatase, acid phosphatase, alamine transaminase and aspartate aminotransferase in all the brain regions when compared with control rats. Aluminium induction also caused histopathological changes in the cerebral cortex and cerebellum of rat brain, which was reverted by pretreatment with ASECP. The result clearly indicates the potential of the seed extract of Celastrus paniculatus prevents the damage inflicted by aluminium on rat brain regions [51].

Iron chelating activity
Nukho and colleagues, 2015 evaluated that the methanolic extract of seeds of Celastrus paniculatus for in vivo iron-chelating activity by using various reagents like ferrous sulphate, potassium thioscinate and desferrioxamine [52]. Further, in vivo activity was also done that decreased the serum iron level in the test group as compared to the disease treated control group. SGT, SGOT and Creatinine levels were reduced as compared to iron overloaded rats. So the methanolic seed extract can be used to treat thalassemia and hemochromatosis.

Anti-articular activity
Kothavade et al., 2015 used the petroleum ether extract of Celastrus paniculatus seeds to study the anti-artritic effect in adjuvant-induced arthritis in rats [53]. After evaluation of arthritis score, paw volume, body weight, climbing ability and thymus and spleen weight, it was clear that Celastrus paniculatus seed extract alleviated these parameters that were due to suppression of overproduction of inflammatory cytokines, cellular enzymes. It also restored the decreased level of superoxide dismutase, catalase and glutathione. The results suggested that the anti-artritic effect may be due to cytokine regulation, immune-suppressive effects, and bone protective activities. In vitro anti-artritic activity of Celastrus paniculatus was also studied by Thangaraj, 2016 [54].

Antidepressant-like activity
Behavioral and biochemical evidences for antidepressant-like activity was evaluated by Valecha and Dhingra, 2016 by using the
seed oil of Celastrus paniculatus [55]. Seed oil at the dose of 50, 100 and 200 mg/kg and the drug fluoxetine were given to mice for fourteen days. On the fourteenth days after the drug administration tail suspension test and force swim test were performed that showed decrease in an immobility period of mice and plasma corticosterone level and inhibition of monoamine oxidase-A activity, thus responsible for the antidepressant-like activity.

CONCLUSION

Celastrus paniculatus is a well-known plant in Indian traditional medicine with different medicinal uses and negligible side effects. In this review, we concluded traditional uses, ethnomedical study, organolectic characters, chemical constituents and pharmacological uses in a descriptive manner. Best use of seeds of drugs with memory-enhancing activity or as nerve tonic. Other traditional uses are as sedative, tranquilizer, in paralysis, rheumatism, leprosy, bacterial infection and as wound healing agents. Literature review showed that most of the reported activities like anti-inflammatory, antioxidant, hypo lipidemic, iron chelating, nootropic and cognitive activity are by different extracts of Celastrus paniculatus seeds which may be due to celapanin, celapagine, β-myric, β-amanin, β-sitosterol, stigmasterol, malkanguinol, malkangini and panicaladiol. Only a few activities are reported with the use of leaves, roots and flower extract. So there is a need to explore the other parts of Celastrus paniculatus also for the beneficial effects as they also contain active constituents like triacontanol, pristimerin, benzoic acid, quinine and golden yellow oil, zeylasterol, zeylasterone, celastrol, phenolic triterpenoids and tannins. This review will be useful as the scientific story of Celastrus paniculatus.

FUNDING

Nil

AUTHORS CONTRIBUTIONS

All the authors have contributed equally.

CONFICT OF INTERESTS

Declared none

REFERENCES